bezier

bezier package

Helper for Bézier Curves, Triangles, and Higher Order Objects.

Intended to perform basic operations on Bézier objects such as intersections, length/area/etc. computations, subdivision, implicitization and other relevant information.

Plotting utilities will also be provided.

Submodules

bezier.curve module

Helper for Bézier Curves.

See Curve-Curve Intersection for examples using the Curve class to find intersections.

class bezier.curve.Curve(nodes, degree, start=0.0, end=1.0, root=None, _copy=True)

Bases: bezier._base.Base

Represents a Bézier curve.

We take the traditional definition: a Bézier curve is a mapping from \(s \in \left[0, 1\right]\) to convex combinations of points \(v_0, v_1, \ldots, v_n\) in some vector space:

\[B(s) = \sum_{j = 0}^n \binom{n}{j} s^j (1 - s)^{n - j} \cdot v_j\]
_images/curve_constructor.png
>>> import bezier
>>> nodes = np.array([
...     [0.0  , 0.0],
...     [0.625, 0.5],
...     [1.0  , 0.5],
... ])
>>> curve = bezier.Curve.from_nodes(nodes)
>>> curve
<Curve (degree=2, dimension=2)>
Parameters:
  • nodes (numpy.ndarray) – The nodes in the curve. The rows represent each node while the columns are the dimension of the ambient space.
  • degree (int) – The degree of the curve. This is assumed to correctly correspond to the number of nodes. Use from_nodes() if the degree has not yet been computed.
  • start (Optional [ float ]) – The beginning of the sub-interval that this curve represents.
  • end (Optional [ float ]) – The end of the sub-interval that this curve represents.
  • root (Optional [ Curve ]) – The root curve that contains this current curve.
  • _copy (bool) – Flag indicating if the nodes should be copied before being stored. Defaults to True since callers may freely mutate nodes after passing in.
classmethod from_nodes(nodes, start=0.0, end=1.0, root=None, _copy=True)

Create a Curve from nodes.

Computes the degree based on the shape of nodes.

Parameters:
  • nodes (numpy.ndarray) – The nodes in the curve. The rows represent each node while the columns are the dimension of the ambient space.
  • start (Optional [ float ]) – The beginning of the sub-interval that this curve represents.
  • end (Optional [ float ]) – The end of the sub-interval that this curve represents.
  • root (Optional [ Curve ]) – The root curve that contains this current curve.
  • _copy (bool) – Flag indicating if the nodes should be copied before being stored. Defaults to True since callers may freely mutate nodes after passing in.
Returns:

The constructed curve.

Return type:

Curve

__repr__()

Representation of current object.

Returns:Object representation.
Return type:str
length

float: The length of the current curve.

start

float: Start of sub-interval this curve represents.

This value is used to track the current curve in the re-parameterization / subdivision process. The curve is still defined on the unit interval, but this value illustrates how this curve relates to a “parent” curve. For example:

>>> nodes = np.array([
...     [0.0, 0.0],
...     [1.0, 2.0],
... ])
>>> curve = bezier.Curve(nodes, 1)
>>> curve
<Curve (degree=1, dimension=2)>
>>> left, right = curve.subdivide()
>>> left
<Curve (degree=1, dimension=2, start=0, end=0.5)>
>>> right
<Curve (degree=1, dimension=2, start=0.5, end=1)>
>>> _, mid_right = left.subdivide()
>>> mid_right
<Curve (degree=1, dimension=2, start=0.25, end=0.5)>
>>> mid_right.nodes
array([[ 0.25, 0.5 ],
       [ 0.5 , 1.  ]])
end

float: End of sub-interval this curve represents.

See start for more information.

root

Curve: The “root” curve that contains the current curve.

This indicates that the current curve is a section of the “root” curve. For example:

>>> _, right = curve.subdivide()
>>> right
<Curve (degree=2, dimension=2, start=0.5, end=1)>
>>> right.root is curve
True
>>> right.evaluate(0.0) == curve.evaluate(0.5)
array([[ True, True]], dtype=bool)
>>>
>>> mid_left, _ = right.subdivide()
>>> mid_left
<Curve (degree=2, dimension=2, start=0.5, end=0.75)>
>>> mid_left.root is curve
True
>>> mid_left.evaluate(1.0) == curve.evaluate(0.75)
array([[ True, True]], dtype=bool)
edge_index

Optional [ int ] : The index of the edge among a group of edges.

>>> curve.edge_index
1
>>> curve.previous_edge
<Curve (degree=1, dimension=2)>
>>> curve.previous_edge.edge_index
0
>>> curve.next_edge
<Curve (degree=1, dimension=2)>
>>> curve.next_edge.edge_index
2

This is intended to be used when a Curve is created as part of a larger structure like a Surface or CurvedPolygon.

next_edge

Optional [ Curve ] : An edge that comes after the current one.

This is intended to be used when a Curve is created as part of a larger structure like a Surface or CurvedPolygon.

previous_edge

Optional [ Curve ] : An edge that comes before the current one.

This is intended to be used when a Curve is created as part of a larger structure like a Surface or CurvedPolygon.

evaluate(s)

Evaluate \(B(s)\) along the curve.

See evaluate_multi() for more details.

_images/curve_evaluate.png
>>> nodes = np.array([
...     [0.0  , 0.0],
...     [0.625, 0.5],
...     [1.0  , 0.5],
... ])
>>> curve = bezier.Curve(nodes, 2)
>>> curve.evaluate(0.75)
array([[ 0.796875, 0.46875 ]])
Parameters:s (float) – Parameter along the curve.
Returns:The point on the curve (as a two dimensional NumPy array with a single row).
Return type:numpy.ndarray
evaluate_multi(s_vals)

Evaluate \(B(s)\) for multiple points along the curve.

This is done by first evaluating each member of the Bernstein basis at each value in s_vals and then applying those to the control points for the current curve.

This is done instead of using de Casteljau’s algorithm. Implementing de Casteljau is problematic because it requires a choice between one of two methods:

  • vectorize operations of the form \((1 - s)v + s w\), which requires a copy of the curve’s control points for each value in s_vals
  • avoid vectorization and compute each point in serial

Instead, we can use vectorized operations to build up the Bernstein basis values.

>>> nodes = np.array([
...     [0.0, 0.0, 0.0],
...     [1.0, 2.0, 3.0],
... ])
>>> curve = bezier.Curve(nodes, 1)
>>> curve
<Curve (degree=1, dimension=3)>
>>> s_vals = np.linspace(0.0, 1.0, 5)
>>> curve.evaluate_multi(s_vals)
array([[ 0.  , 0.  , 0.  ],
       [ 0.25, 0.5 , 0.75],
       [ 0.5 , 1.  , 1.5 ],
       [ 0.75, 1.5 , 2.25],
       [ 1.  , 2.  , 3.  ]])
Parameters:s_vals (numpy.ndarray) – Parameters along the curve (as a 1D array).
Returns:The points on the curve. As a two dimensional NumPy array, with the rows corresponding to each s value and the columns to the dimension.
Return type:numpy.ndarray
plot(num_pts, ax=None, show=False)

Plot the current curve.

Parameters:
Returns:

The axis containing the plot. This may be a newly created axis.

Return type:

matplotlib.artist.Artist

Raises:

NotImplementedError – If the curve’s dimension is not 2.

subdivide()

Split the curve \(B(s)\) into a left and right half.

Takes the interval \(\left[0, 1\right]\) and splits the curve into \(B_1 = B\left(\left[0, \frac{1}{2}\right]\right)\) and \(B_2 = B\left(\left[\frac{1}{2}, 1\right]\right)\). In order to do this, also reparameterizes the curve, hence the resulting left and right halves have new nodes.

_images/curve_subdivide.png
>>> nodes = np.array([
...     [0.0 , 0.0],
...     [1.25, 3.0],
...     [2.0 , 1.0],
... ])
>>> curve = bezier.Curve(nodes, 2)
>>> left, right = curve.subdivide()
>>> left
<Curve (degree=2, dimension=2, start=0, end=0.5)>
>>> left.nodes
array([[ 0.   , 0.   ],
       [ 0.625, 1.5  ],
       [ 1.125, 1.75 ]])
>>> right
<Curve (degree=2, dimension=2, start=0.5, end=1)>
>>> right.nodes
array([[ 1.125, 1.75 ],
       [ 1.625, 2.   ],
       [ 2.   , 1.   ]])
Returns:The left and right sub-curves.
Return type:Tuple [ Curve, Curve ]
intersect(other)

Find the points of intersection with another curve.

See Curve-Curve Intersection for more details.

_images/curve_intersect.png
>>> nodes1 = np.array([
...     [0.0  , 0.0  ],
...     [0.375, 0.75 ],
...     [0.75 , 0.375],
... ])
>>> curve1 = bezier.Curve(nodes1, 2)
>>> nodes2 = np.array([
...     [0.5, 0.0 ],
...     [0.5, 0.75],
... ])
>>> curve2 = bezier.Curve(nodes2, 1)
>>> intersections = curve1.intersect(curve2)
>>> intersections
array([[ 0.5, 0.5]])
Parameters:

other (Curve) – Other curve to intersect with.

Returns:

Array of intersection points (possibly empty).

Return type:

numpy.ndarray

Raises:
elevate()

Return a degree-elevated version of the current curve.

Does this by converting the current nodes \(v_0, \ldots, v_n\) to new nodes \(w_0, \ldots, w_{n + 1}\) where

\[\begin{split}\begin{align*} w_0 &= v_0 \\ w_j &= \frac{j}{n + 1} v_{j - 1} + \frac{n + 1 - j}{n + 1} v_j \\ w_{n + 1} &= v_n \end{align*}\end{split}\]
Returns:The degree-elevated curve.
Return type:Curve
specialize(start, end)

Specialize the curve to a given sub-interval.

_images/curve_specialize.png
>>> curve = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> new_curve = curve.specialize(-0.25, 0.75)
>>> new_curve
<Curve (degree=2, dimension=2, start=-0.25, end=0.75)>
>>> new_curve.nodes
array([[-0.25 , -0.625],
       [ 0.25 ,  0.875],
       [ 0.75 ,  0.375]])

This is generalized version of subdivide(), and can even match the output of that method:

>>> left, right = curve.subdivide()
>>> also_left = curve.specialize(0.0, 0.5)
>>> np.all(also_left.nodes == left.nodes)
True
>>> also_right = curve.specialize(0.5, 1.0)
>>> np.all(also_right.nodes == right.nodes)
True
Parameters:
  • start (float) – The start point of the interval we are specializing to.
  • end (float) – The end point of the interval we are specializing to.
Returns:

The newly-specialized curve.

Return type:

Curve

degree

int: The degree of the current shape.

dimension

int: The dimension that the shape lives in.

For example, if the shape lives in \(\mathbf{R}^3\), then the dimension is 3.

locate(point)

Find a point on the current curve.

Solves for \(s\) in \(B(s) = p\).

Note

A unique solution is only guaranteed if the current curve has no self-intersections. This code assumes, but doesn’t check, that this is true.

_images/curve_locate.png
>>> curve = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [1.0, 2.0],
...     [3.0, 1.0],
...     [4.0, 0.0],
... ]))
>>> point1 = np.array([[3.09375, 0.703125]])
>>> s = curve.locate(point1)
>>> s
0.75
>>> point2 = np.array([[2.0, 0.5]])
>>> curve.locate(point2) is None
True
Parameters:point (numpy.ndarray) – A (1xD) point on the curve, where \(D\) is the dimension of the curve.
Returns:The parameter value (\(s\)) corresponding to point or None if the point is not on the curve.
Return type:Optional [ float ]
Raises:ValueError – If the dimension of the point doesn’t match the dimension of the current curve.
nodes

numpy.ndarray: The nodes that define the current shape.

bezier.curved_polygon module

Curved polygon and associated helpers.

A curved polygon (in \(\mathbf{R}^2\)) is defined by the collection of Bézier curves that determine the boundary.

class bezier.curved_polygon.CurvedPolygon(*edges, **kwargs)

Bases: object

Represents an object defined by its curved boundary.

The boundary is a piecewise defined collection of Bézier curves.

Note

The direction of the nodes in each Curve on the boundary is important. When verifying, we check that one curve begins where the last one ended.

_images/curved_polygon_constructor1.png
>>> import bezier
>>> edge0 = bezier.Curve.from_nodes(np.array([
...     [0.0,  0.0],
...     [1.0, -1.0],
...     [2.0,  0.0],
... ]))
>>> edge1 = bezier.Curve.from_nodes(np.array([
...     [2.0, 0.0],
...     [2.0, 1.0],
... ]))
>>> edge2 = bezier.Curve.from_nodes(np.array([
...     [2.0, 1.0],
...     [1.0, 2.0],
...     [0.0, 1.0],
... ]))
>>> edge3 = bezier.Curve.from_nodes(np.array([
...     [0.0, 1.0],
...     [0.0, 0.0],
... ]))
>>> curved_poly = bezier.CurvedPolygon(
...     edge0, edge1, edge2, edge3)
>>> curved_poly
<CurvedPolygon (num_sides=4)>

Though the endpoints of each pair of edges are verified to match, the curved polygon as a whole is not verified, so creating a curved polygon with self-intersections is possible:

_images/curved_polygon_constructor2.png
>>> edge0 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [1.0, 0.0],
... ]))
>>> edge1 = bezier.Curve.from_nodes(np.array([
...     [1.0 , 0.0],
...     [1.25, 0.5],
...     [1.0 , 1.0],
... ]))
>>> edge2 = bezier.Curve.from_nodes(np.array([
...     [1.0, 1.0],
...     [2.0, 1.0],
... ]))
>>> edge3 = bezier.Curve.from_nodes(np.array([
...     [2.0, 1.0 ],
...     [1.0, 0.75],
...     [0.0, 0.0 ],
... ]))
>>> curved_poly = bezier.CurvedPolygon(
...     edge0, edge1, edge2, edge3)
>>> curved_poly
<CurvedPolygon (num_sides=4)>
Parameters:
  • edges (Tuple [ Curve, ... ]) – The boundary edges of the curved polygon.
  • kwargs – The only keyword argument accepted is _verify, which is a bool indicating if the edges should be verified as having shared endpoints. It defaults to True.
num_sides

int: The number of sides in the current polygon.

__repr__()

Representation of current object.

Returns:Object representation.
Return type:str
plot(pts_per_edge, color=None, ax=None, show=False)

Plot the current curved polygon.

Parameters:
Returns:

The axis containing the plot. This may be a newly created axis.

Return type:

matplotlib.artist.Artist

bezier.surface module

Helper for Bézier Surfaces / Triangles.

class bezier.surface.Surface(nodes, degree, base_x=0.0, base_y=0.0, width=1.0, _copy=True)

Bases: bezier._base.Base

Represents a Bézier surface.

We define a Bézier triangle as a mapping from the unit simplex in 2D (i.e. the unit triangle) onto a surface in an arbitrary dimension. We use barycentric coordinates

\[\lambda_1 = 1 - s - t, \lambda_2 = s, \lambda_3 = t\]

for points in

\[\left\{(s, t) \mid 0 \leq s, t, s + t \leq 1\right\}.\]

As with curves, using these weights we get convex combinations of points \(v_{i, j, k}\) in some vector space:

\[B\left(\lambda_1, \lambda_2, \lambda_3\right) = \sum_{i + j + k = d} \binom{d}{i \, j \, k} \lambda_1^i \lambda_2^j \lambda_3^k \cdot v_{i, j, k}\]

Note

We assume the nodes are ordered from left-to-right and from bottom-to-top. So for example, the linear triangle:

(0,0,1)

(1,0,0)  (0,1,0)

is ordered as

\[\begin{split}\left[\begin{array}{c c c} v_{1,0,0} & v_{0,1,0} & v_{0,0,1} \end{array}\right]^T\end{split}\]

the quadratic triangle:

(0,0,2)

(1,0,1)  (0,1,1)

(2,0,0)  (1,1,0)  (0,2,0)

is ordered as

\[\begin{split}\left[\begin{array}{c c c c c c} v_{2,0,0} & v_{1,1,0} & v_{0,2,0} & v_{1,0,1} & v_{0,1,1} & v_{0,0,2} \end{array}\right]^T\end{split}\]

the cubic triangle:

(0,0,3)

(1,0,2)  (0,1,2)

(2,0,1)  (1,1,1)  (0,2,1)

(3,0,0)  (2,1,0)  (1,2,0)  (0,3,0)

is ordered as

\[\begin{split}\left[\begin{array}{c c c c c c c c c c} v_{3,0,0} & v_{2,1,0} & v_{1,2,0} & v_{0,3,0} & v_{2,0,1} & v_{1,1,1} & v_{0,2,1} & v_{1,0,2} & v_{0,1,2} & v_{0,0,3} \end{array}\right]^T\end{split}\]

and so on.

_images/surface_constructor.png
>>> import bezier
>>> nodes = np.array([
...     [0.0  , 0.0  ],
...     [0.5  , 0.0  ],
...     [1.0  , 0.25 ],
...     [0.125, 0.5  ],
...     [0.375, 0.375],
...     [0.25 , 1.0  ],
... ])
>>> surface = bezier.Surface(nodes, degree=2)
>>> surface
<Surface (degree=2, dimension=2)>
Parameters:
  • nodes (numpy.ndarray) – The nodes in the surface. The rows represent each node while the columns are the dimension of the ambient space.
  • degree (int) – The degree of the surface. This is assumed to correctly correspond to the number of nodes. Use from_nodes() if the degree has not yet been computed.
  • base_x (Optional [ float ]) – The \(x\)-coordinate of the base vertex of the sub-triangle that this surface represents.
  • base_y (Optional [ float ]) – The \(y\)-coordinate of the base vertex of the sub-triangle that this surface represents.
  • width (Optional [ float ]) – The width of the sub-triangle that this surface represents.
  • _copy (bool) – Flag indicating if the nodes should be copied before being stored. Defaults to True since callers may freely mutate nodes after passing in.
classmethod from_nodes(nodes, base_x=0.0, base_y=0.0, width=1.0, _copy=True)

Create a Surface from nodes.

Computes the degree based on the shape of nodes.

Parameters:
  • nodes (numpy.ndarray) – The nodes in the surface. The rows represent each node while the columns are the dimension of the ambient space.
  • base_x (Optional [ float ]) – The \(x\)-coordinate of the base vertex of the sub-triangle that this surface represents.
  • base_y (Optional [ float ]) – The \(y\)-coordinate of the base vertex of the sub-triangle that this surface represents.
  • width (Optional [ float ]) – The width of the sub-triangle that this surface represents.
  • _copy (bool) – Flag indicating if the nodes should be copied before being stored. Defaults to True since callers may freely mutate nodes after passing in.
Returns:

The constructed surface.

Return type:

Surface

__repr__()

Representation of current object.

Returns:Object representation.
Return type:str
area

float: The area of the current surface.

Raises:NotImplementedError – If the area isn’t already cached.
width

float: The “width” of the parameterized triangle.

When re-parameterizing (e.g. via subdivide()) we specialize the surface from the unit triangle to some sub-triangle. After doing this, we re-parameterize so that that sub-triangle is treated like the unit triangle.

To track which sub-triangle we are in during the subdivision process, we use the coordinates of the base vertex as well as the “width” of each leg.

_images/surface_width1.png
>>> surface.base_x, surface.base_y
(0.0, 0.0)
>>> surface.width
1.0

Upon subdivision, the width halves (and potentially changes sign) and the vertex moves to one of four points:

_images/surface_width2.png
>>> _, sub_surface_b, sub_surface_c, _ = surface.subdivide()
>>> sub_surface_b.base_x, sub_surface_b.base_y
(0.5, 0.5)
>>> sub_surface_b.width
-0.5
>>> sub_surface_c.base_x, sub_surface_c.base_y
(0.5, 0.0)
>>> sub_surface_c.width
0.5
base_x

float: The x-coordinate of the base vertex.

See width() for more detail.

base_y

float: The y-coordinate of the base vertex.

See width() for more detail.

edges

tuple: The edges of the surface.

>>> nodes = np.array([
...     [0.0   ,  0.0   ],
...     [0.5   , -0.1875],
...     [1.0   ,  0.0   ],
...     [0.1875,  0.5   ],
...     [0.625 ,  0.625 ],
...     [0.0   ,  1.0   ],
... ])
>>> surface = bezier.Surface(nodes, 2)
>>> edge1, _, _ = surface.edges
>>> edge1
<Curve (degree=2, dimension=2)>
>>> edge1.nodes
array([[ 0.  ,  0.    ],
       [ 0.5 , -0.1875],
       [ 1.  ,  0.    ]])
Returns:The edges of the surface.
Return type:Tuple [ Curve, Curve, Curve ]
evaluate_barycentric(lambda1, lambda2, lambda3, _verify=True)

Compute a point on the surface.

Evaluates \(B\left(\lambda_1, \lambda_2, \lambda_3\right)\).

_images/surface_evaluate_barycentric.png
>>> nodes = np.array([
...     [0.0  , 0.0  ],
...     [0.5  , 0.0  ],
...     [1.0  , 0.25 ],
...     [0.125, 0.5  ],
...     [0.375, 0.375],
...     [0.25 , 1.0  ],
... ])
>>> surface = bezier.Surface(nodes, 2)
>>> point = surface.evaluate_barycentric(0.125, 0.125, 0.75)
>>> point
array([[ 0.265625 , 0.73046875]])

However, this can’t be used for points outside the reference triangle:

>>> surface.evaluate_barycentric(-0.25, 0.75, 0.5)
Traceback (most recent call last):
  ...
ValueError: ('Parameters must be positive', -0.25, 0.75, 0.5)

or for non-Barycentric coordinates;

>>> surface.evaluate_barycentric(0.25, 0.25, 0.25)
Traceback (most recent call last):
  ...
ValueError: ('Values do not sum to 1', 0.25, 0.25, 0.25)

However, these “invalid” inputs can be used if _verify is False.

>>> surface.evaluate_barycentric(-0.25, 0.75, 0.5, _verify=False)
array([[ 0.6875 , 0.546875]])
>>> surface.evaluate_barycentric(0.25, 0.25, 0.25, _verify=False)
array([[ 0.203125, 0.1875 ]])
Parameters:
  • lambda1 (float) – Parameter along the reference triangle.
  • lambda2 (float) – Parameter along the reference triangle.
  • lambda3 (float) – Parameter along the reference triangle.
  • _verify (Optional [ bool ]) – Indicates if the barycentric coordinates should be verified as summing to one and all non-negative (i.e. verified as barycentric). Can either be used to evaluate at points outside the domain, or to save time when the caller already knows the input is verified. Defaults to True.
Returns:

The point on the surface (as a two dimensional NumPy array with a single row).

Return type:

numpy.ndarray

Raises:
  • ValueError – If the weights are not valid barycentric coordinates, i.e. they don’t sum to 1. (Won’t raise if _verify=False.)
  • ValueError – If some weights are negative. (Won’t raise if _verify=False.)
evaluate_cartesian(s, t, _verify=True)

Compute a point on the surface.

Evaluates \(B\left(1 - s - t, s, t\right)\) by calling evaluate_barycentric():

>>> nodes = np.array([
...     [0.0 , 0.0  ],
...     [0.5 , 0.5  ],
...     [1.0 , 0.625],
...     [0.0 , 0.5  ],
...     [0.5 , 0.5  ],
...     [0.25, 1.0  ],
... ])
>>> surface = bezier.Surface(nodes, 2)
>>> point = surface.evaluate_cartesian(0.125, 0.375)
>>> point
array([[ 0.16015625, 0.44726562]])
>>> surface.evaluate_barycentric(0.5, 0.125, 0.375)
array([[ 0.16015625, 0.44726562]])
Parameters:
Returns:

The point on the surface (as a two dimensional NumPy array).

Return type:

numpy.ndarray

evaluate_multi(param_vals, _verify=True)

Compute multiple points on the surface.

If param_vals has two columns, this method treats them as Cartesian:

_images/surface_evaluate_multi1.png
>>> nodes = np.array([
...     [ 0.0, 0.0],
...     [ 2.0, 1.0],
...     [-3.0, 2.0],
... ])
>>> surface = bezier.Surface(nodes, 1)
>>> surface
<Surface (degree=1, dimension=2)>
>>> param_vals = np.array([
...     [0.0  , 0.0  ],
...     [0.125, 0.625],
...     [0.5  , 0.5  ],
... ])
>>> points = surface.evaluate_multi(param_vals)
>>> points
array([[ 0.   , 0.   ],
       [-1.625, 1.375],
       [-0.5  , 1.5  ]])

and if param_vals has three columns, treats them as Barycentric:

_images/surface_evaluate_multi2.png
>>> nodes = np.array([
...     [ 0. , 0.  ],
...     [ 1. , 0.75],
...     [ 2. , 1.  ],
...     [-1.5, 1.  ],
...     [-0.5, 1.5 ],
...     [-3. , 2.  ],
... ])
>>> surface = bezier.Surface(nodes, 2)
>>> surface
<Surface (degree=2, dimension=2)>
>>> param_vals = np.array([
...     [0.   , 0.25, 0.75 ],
...     [1.   , 0.  , 0.   ],
...     [0.25 , 0.5 , 0.25 ],
...     [0.375, 0.25, 0.375],
... ])
>>> points = surface.evaluate_multi(param_vals)
>>> points
array([[-1.75  , 1.75    ],
       [ 0.    , 0.      ],
       [ 0.25  , 1.0625  ],
       [-0.625 , 1.046875]])

Note

This currently just uses evaluate_cartesian() and evaluate_barycentric() so is less performant than it could be.

Parameters:
Returns:

The point on the surface.

Return type:

numpy.ndarray

Raises:
  • ValueError – If param_vals is not a 2D array.
  • ValueError – If param_vals doesn’t have 2 or 3 columns.
plot(pts_per_edge, color=None, ax=None, with_nodes=False, show=False)

Plot the current surface.

Parameters:
Returns:

The axis containing the plot. This may be a newly created axis.

Return type:

matplotlib.artist.Artist

Raises:

NotImplementedError – If the surface’s dimension is not 2.

subdivide()

Split the surface into four sub-surfaces.

Does so by taking the unit triangle (i.e. the domain of the surface) and splitting it into four sub-triangles

_images/surface_subdivide1.png

Then the surface is re-parameterized via the map to/from the given sub-triangles and the unit triangle.

For example, when a degree two surface is subdivided:

_images/surface_subdivide2.png
>>> nodes = np.array([
...     [-1.0 , 0.0 ],
...     [ 0.5 , 0.5 ],
...     [ 2.0 , 0.0 ],
...     [ 0.25, 1.75],
...     [ 2.0 , 3.0 ],
...     [ 0.0 , 4.0 ],
... ])
>>> surface = bezier.Surface(nodes, 2)
>>> _, sub_surface_b, _, _ = surface.subdivide()
>>> sub_surface_b
<Surface (degree=2, dimension=2, base=(0.5, 0.5), width=-0.5)>
>>> sub_surface_b.nodes
array([[ 1.5   , 2.5   ],
       [ 0.6875, 2.3125],
       [-0.125 , 1.875 ],
       [ 1.1875, 1.3125],
       [ 0.4375, 1.3125],
       [ 0.5   , 0.25  ]])
Returns:The lower left, central, lower right and upper left sub-surfaces (in that order).
Return type:Tuple [ Surface, Surface, Surface, Surface ]
is_valid

bool: Flag indicating if the surface is “valid”.

Here, “valid” means there are no self-intersections or singularities.

This checks if the Jacobian of the map from the reference triangle is nonzero. For example, a linear “surface” with collinear points is invalid:

_images/surface_is_valid1.png
>>> nodes = np.array([
...     [0.0, 0.0],
...     [1.0, 1.0],
...     [2.0, 2.0],
... ])
>>> surface = bezier.Surface(nodes, 1)
>>> surface.is_valid
False

while a quadratic surface with one straight side:

_images/surface_is_valid2.png
>>> nodes = np.array([
...     [ 0.0  , 0.0  ],
...     [ 0.5  , 0.125],
...     [ 1.0  , 0.0  ],
...     [-0.125, 0.5  ],
...     [ 0.5  , 0.5  ],
...     [ 0.0  , 1.0  ],
... ])
>>> surface = bezier.Surface(nodes, 2)
>>> surface.is_valid
True

though not all higher degree surfaces are valid:

_images/surface_is_valid3.png
>>> nodes = np.array([
...     [1.0, 0.0],
...     [0.0, 0.0],
...     [1.0, 1.0],
...     [0.0, 0.0],
...     [0.0, 0.0],
...     [0.0, 1.0],
... ])
>>> surface = bezier.Surface(nodes, 2)
>>> surface.is_valid
False
locate(point)

Find a point on the current surface.

Solves for \(s\) and \(t\) in \(B(s, t) = p\).

Note

A unique solution is only guaranteed if the current surface is valid. This code assumes a valid surface, but doesn’t check.

_images/surface_locate.png
>>> surface = bezier.Surface.from_nodes(np.array([
...     [0.0 ,  0.0 ],
...     [0.5 , -0.25],
...     [1.0 ,  0.0 ],
...     [0.25,  0.5 ],
...     [0.75,  0.75],
...     [0.0 ,  1.0 ],
... ]))
>>> point = np.array([[0.59375, 0.25]])
>>> s, t = surface.locate(point)
>>> s
0.5
>>> t
0.25
Parameters:

point (numpy.ndarray) – A (1xD) point on the surface, where \(D\) is the dimension of the surface.

Returns:

The \(s\) and \(t\) values corresponding to x_val and y_val or None if the point is not on the surface.

Return type:

Optional [ Tuple [ float, float ] ]

Raises:
  • NotImplementedError – If the surface isn’t in \(\mathbf{R}^2\).
  • ValueError – If the dimension of the point doesn’t match the dimension of the current surface.
intersect(other, _verify=True)

Find the common intersection with another surface.

Parameters:
  • other (Surface) – Other surface to intersect with.
  • _verify (Optional [ bool ]) – Indicates if extra caution should be used to verify assumptions about the algorithm as it proceeds. Can be disabled to speed up execution time. Defaults to True.
Returns:

List of intersections (possibly empty).

Return type:

List [ CurvedPolygon ]

Raises:
elevate()

Return a degree-elevated version of the current surface.

Does this by converting the current nodes \(\left\{v_{i, j, k}\right\}_{i + j + k = d}\) to new nodes \(\left\{w_{i, j, k}\right\}_{i + j + k = d + 1}\). Does so by re-writing

\[E\left(\lambda_1, \lambda_2, \lambda_3\right) = \left(\lambda_1 + \lambda_2 + \lambda_3\right) B\left(\lambda_1, \lambda_2, \lambda_3\right) = \sum_{i + j + k = d + 1} \binom{d + 1}{i \, j \, k} \lambda_1^i \lambda_2^j \lambda_3^k \cdot w_{i, j, k}\]

In this form, we must have

\[\begin{split}\begin{align*} \binom{d + 1}{i \, j \, k} \cdot w_{i, j, k} &= \binom{d}{i - 1 \, j \, k} \cdot v_{i - 1, j, k} + \binom{d}{i \, j - 1 \, k} \cdot v_{i, j - 1, k} + \binom{d}{i \, j \, k - 1} \cdot v_{i, j, k - 1} \\ \Longleftrightarrow (d + 1) \cdot w_{i, j, k} &= i \cdot v_{i - 1, j, k} + j \cdot v_{i, j - 1, k} + k \cdot v_{i, j, k - 1} \end{align*}\end{split}\]

where we assume that, for example, \(v_{i, j, k - 1}\) is \(0\) (or any other unused value) if \(k = 0\).

>>> surface = bezier.Surface.from_nodes(np.array([
...     [0.0, 0.0],
...     [1.0, 0.0],
...     [0.0, 1.0],
... ]))
>>> surface
<Surface (degree=1, dimension=2)>
>>> new_surface = surface.elevate()
>>> new_surface
<Surface (degree=2, dimension=2)>
>>> new_surface.nodes
array([[ 0. , 0. ],
       [ 0.5, 0. ],
       [ 1. , 0. ],
       [ 0. , 0.5],
       [ 0.5, 0.5],
       [ 0. , 1. ]])
Returns:The degree-elevated surface.
Return type:Surface
degree

int: The degree of the current shape.

dimension

int: The dimension that the shape lives in.

For example, if the shape lives in \(\mathbf{R}^3\), then the dimension is 3.

nodes

numpy.ndarray: The nodes that define the current shape.

Curve-Curve Intersection

The problem of intersecting two curves is a difficult one in computational geometry. The Curve.intersect() method uses a combination of curve subdivision, bounding box intersection, and curve approximation (by lines) to find intersections.

Curve-Line Intersection

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.375],
...     [1.0, 0.375],
... ]))
>>> curve1.intersect(curve2)
array([[ 0.25 , 0.375],
       [ 0.75 , 0.375]])
_images/test_curves1_and_8.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.5, 0.0 ],
...     [0.5, 0.75],
... ]))
>>> curve1.intersect(curve2)
array([[ 0.5, 0.5]])
_images/test_curves1_and_9.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [4.5, 9.0],
...     [9.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0, 8.0],
...     [6.0, 0.0],
... ]))
>>> curve1.intersect(curve2)
array([[ 3., 4.]])
_images/test_curves10_and_11.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.375],
...     [1.0, 0.375],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.5, 0.0 ],
...     [0.5, 0.75],
... ]))
>>> curve1.intersect(curve2)
array([[ 0.5 , 0.375]])
_images/test_curves8_and_9.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [-1.0, 1.0],
...     [ 0.5, 0.5],
...     [ 0.0, 2.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [ 0.5 , 0.5 ],
...     [-0.25, 1.25],
... ]))
>>> curve1.intersect(curve2)
array([[ 0., 1.]])
_images/test_curves29_and_30.png

Curved Intersections

For curves which intersect at exact floating point numbers, we can typically compute the intersection with zero error:

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0,  0.75],
...     [0.5, -0.25],
...     [1.0,  0.75],
... ]))
>>> curve1.intersect(curve2)
array([[ 0.25 , 0.375],
       [ 0.75 , 0.375]])
_images/test_curves1_and_5.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [1.5, 3.0],
...     [3.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [ 3.0  ,  1.5    ],
...     [ 2.625, -0.90625],
...     [-0.75 ,  2.4375 ],
... ]))
>>> curve1.intersect(curve2)
array([[ 0.75  , 1.125  ],
       [ 2.625 , 0.65625]])
_images/test_curves3_and_4.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0  , 0.0  ],
...     [0.375, 0.75 ],
...     [0.75 , 0.375],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.25 , 0.5625],
...     [0.625, 0.1875],
...     [1.0  , 0.9375],
... ]))
>>> curve1.intersect(curve2)
array([[ 0.375 , 0.46875],
       [ 0.625 , 0.46875]])
_images/test_curves14_and_16.png

Even for curves which don’t intersect at exact floating point numbers, we can compute the intersection to machine precision:

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [1.125,  0.5],
...     [0.625, -0.5],
...     [0.125,  0.5],
... ]))
>>> intersections = curve1.intersect(curve2)
>>> sq31 = np.sqrt(31.0)
>>> expected = np.array([
...     [36 - 4 * sq31, 16 + sq31],
...     [36 + 4 * sq31, 16 - sq31],
... ]) / 64.0
>>> max_err = np.max(np.abs(intersections - expected))
>>> binary_exponent(max_err)
-54
_images/test_curves1_and_2.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.265625],
...     [0.5, 0.234375],
...     [1.0, 0.265625],
... ]))
>>> intersections = curve1.intersect(curve2)
>>> sq33 = np.sqrt(33.0)
>>> expected = np.array([
...     [33 - 4 * sq33, 17],
...     [33 + 4 * sq33, 17],
... ]) / 66.0
>>> max_err = np.max(np.abs(intersections - expected))
>>> binary_exponent(max_err)
-54
_images/test_curves1_and_7.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0 ,  0.0],
...     [0.25,  2.0],
...     [0.5 , -2.0],
...     [0.75,  2.0],
...     [1.0 ,  0.0],
... ]))
>>> intersections = curve1.intersect(curve2)
>>> sq7 = np.sqrt(7.0)
>>> expected = np.array([
...     [7 - sq7, 6],
...     [7 + sq7, 6],
...     [      0, 0],
...     [     14, 0],
... ]) / 14.0
>>> max_err = np.max(np.abs(intersections - expected))
>>> binary_exponent(max_err)
-54
_images/test_curves1_and_13.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [-0.125, -0.28125],
...     [ 0.5  ,  1.28125],
...     [ 1.125, -0.28125],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [ 1.5625, -0.0625],
...     [-1.5625,  0.25  ],
...     [ 1.5625,  0.5625],
... ]))
>>> intersections = curve1.intersect(curve2)
>>> sq5 = np.sqrt(5.0)
>>> expected = np.array([
...     [6 - 2 * sq5, 5 - sq5],
...     [          4, 6      ],
...     [         16, 0      ],
...     [6 + 2 * sq5, 5 + sq5],
... ]) / 16.0
>>> max_err = np.max(np.abs(intersections - expected))
>>> binary_exponent(max_err)
-51
_images/test_curves21_and_22.png

For higher degree intersections, the error starts to get a little larger.

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.25 , 0.625],
...     [0.625, 0.25 ],
...     [1.0  , 1.0  ],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0 , 0.5],
...     [0.25, 1.0],
...     [0.75, 1.5],
...     [1.0 , 0.5],
... ]))
>>> intersections = curve1.intersect(curve2)
>>> s_vals = np.roots([486, -3726, 13905, -18405, 6213, 1231])
>>> _, s_val, _ = np.sort(s_vals[s_vals.imag == 0].real)
>>> x_val = (3 * s_val + 1) / 4
>>> y_val = (9 * s_val * s_val - 6 * s_val + 5) / 8
>>> expected = np.array([
...     [x_val, y_val],
... ])
>>> max_err = np.max(np.abs(intersections - expected))
>>> binary_exponent(max_err)
-50
_images/test_curves15_and_25.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 8.0],
...     [6.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.375, 7.0],
...     [2.125, 8.0],
...     [3.875, 0.0],
...     [5.625, 1.0],
... ]))
>>> intersections = curve1.intersect(curve2)
>>> sq7 = np.sqrt(7.0)
>>> expected = np.array([
...     [           72, 96           ],
...     [72 - 21 * sq7, 96 + 28 * sq7],
...     [72 + 21 * sq7, 96 - 28 * sq7],
... ]) / 24.0
>>> max_err = np.max(np.abs(intersections - expected))
>>> binary_exponent(max_err)
-50
_images/test_curves11_and_26.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.375],
...     [1.0, 0.375],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.125, 0.25  ],
...     [0.375, 0.75  ],
...     [0.625, 0.0   ],
...     [0.875, 0.1875],
... ]))
>>> intersections = curve1.intersect(curve2)
>>> s_val1, s_val2, _ = np.sort(np.roots(
...     [17920, -29760, 13512, -1691]))
>>> expected = np.array([
...     [s_val2, 0.375],
...     [s_val1, 0.375],
... ])
>>> max_err = np.max(np.abs(intersections - expected))
>>> binary_exponent(max_err)
-51
_images/test_curves8_and_27.png

Intersections at Endpoints

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [1.0,  0.0],
...     [1.5, -1.0],
...     [2.0,  0.0],
... ]))
>>> curve1.intersect(curve2)
array([[ 1., 0.]])
_images/test_curves1_and_18.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [2.0, 0.0],
...     [1.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve1.intersect(curve2)
array([[ 1., 0.]])
_images/test_curves1_and_19.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [4.5, 9.0],
...     [9.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [11.0,  8.0],
...     [ 7.0, 10.0],
...     [ 3.0,  4.0],
... ]))
>>> curve1.intersect(curve2)
array([[ 3., 4.]])
_images/test_curves10_and_17.png

Detecting Self-Intersections

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [ 0.0 , 2.0  ],
...     [-1.0 , 0.0  ],
...     [ 1.0 , 1.0  ],
...     [-0.75, 1.625],
... ]))
>>> left, right = curve1.subdivide()
>>> left.intersect(right)
array([[-0.09375 , 0.828125],
       [-0.25    , 1.375   ]])
_images/test_curve12_self_crossing.png

Limitations

Intersections that occur at points of tangency are in general problematic. For example, consider

\[\begin{split}B_1(s) = \left[ \begin{array}{c} s \\ 2s(1 - s)\end{array}\right], \quad B_2(t) = \left[ \begin{array}{c} t \\ t^2 + (1 - t)^2 \end{array}\right]\end{split}\]

The first curve is the zero set of \(y - 2x(1 - x)\), so plugging in the second curve gives

\[0 = t^2 + (1 - t)^2 - 2t(1 - t) = (2t - 1)^2.\]

This shows that a point of tangency is equivalent to a repeated root of a polynomial. For this example, the intersection process successfully terminates

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0, 1.0],
...     [0.5, 0.0],
...     [1.0, 1.0],
... ]))
>>> curve1.intersect(curve2)
array([[ 0.5, 0.5]])
_images/test_curves1_and_6.png

However this library mostly avoids (for now) computing tangent intersections. For example, the curves

_images/test_curves14_and_15.png

have a tangent intersection that this library fails to compute:

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0  , 0.0  ],
...     [0.375, 0.75 ],
...     [0.75 , 0.375],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.25 , 0.625],
...     [0.625, 0.25 ],
...     [1.0  , 1.0  ],
... ]))
>>> curve1.intersect(curve2)
Traceback (most recent call last):
  ...
NotImplementedError: Line segments parallel.

This failure comes from the fact that the linear approximations of the curves near the point of intersection are parallel.

As above, we can find some cases where tangent intersections are resolved:

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [4.5, 9.0],
...     [9.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [3.0, 4.5],
...     [8.0, 4.5],
... ]))
>>> curve1.intersect(curve2)
array([[ 4.5, 4.5]])
_images/test_curves10_and_23.png

but even by rotating an intersection (from above) that we know works

_images/test_curves28_and_29.png

we still see a failure

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [ 0.0, 0.0],
...     [-0.5, 1.5],
...     [ 1.0, 1.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [-1.0, 1.0],
...     [ 0.5, 0.5],
...     [ 0.0, 2.0],
... ]))
>>> curve1.intersect(curve2)
Traceback (most recent call last):
  ...
NotImplementedError: The number of candidate intersections is too high.

In addition to points of tangency, coincident curve segments are (for now) not supported. For the curves

_images/test_curves1_and_24.png

the library fails as well

>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.25,  0.375],
...     [0.75,  0.875],
...     [1.25, -0.625],
... ]))
>>> curve1.intersect(curve2)
Traceback (most recent call last):
  ...
NotImplementedError: The number of candidate intersections is too high.

Algorithm Helpers

In an attempt to thoroughly vet each algorithm used in this library, each computation is split into small units that can be tested independently.

Though many of these computational units aren’t provided as part of the public interface of this library, they are still interesting. (Possibly) more importantly, it’s useful to see these algorithms at work.

In this document, these helper functions and objects are documented. This is to help with the exposition of the computation and does not imply that these are part of the stable public interface.

bezier._intersection_helpers.linearization_error(curve)

Compute the maximum error of a linear approximation.

Helper for Linearization, which is used during the curve-curve intersection process.

We use the line

\[L(s) = v_0 (1 - s) + v_n s\]

and compute a bound on the maximum error

\[\max_{s \in \left[0, 1\right]} \|B(s) - L(s)\|_2.\]

Rather than computing the actual maximum (a tight bound), we use an upper bound via the remainder from Lagrange interpolation in each component. This leaves us with \(\frac{s(s - 1)}{2!}\) times the second derivative in each component.

The second derivative curve is degree \(d = n - 2\) and is given by

\[B''(s) = n(n - 1) \sum_{j = 0}^{d} \binom{d}{j} s^j (1 - s)^{d - j} \cdot \Delta^2 v_j\]

Due to this form (and the convex combination property of Bézier Curves) we know each component of the second derivative will be bounded by the maximum of that component among the \(\Delta^2 v_j\).

For example, the curve

\[\begin{split}B(s) = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s)^2 + \left[\begin{array}{c} 3 \\ 1 \end{array}\right] 2s(1 - s) + \left[\begin{array}{c} 9 \\ -2 \end{array}\right] s^2\end{split}\]

has \(B''(s) \equiv \left[\begin{array}{c} 6 \\ -8 \end{array}\right]\) which has norm \(10\) everywhere, hence the maximum error is

\[\left.\frac{s(1 - s)}{2!} \cdot 10\right|_{s = \frac{1}{2}} = \frac{5}{4}.\]
_images/linearization_error.png
>>> nodes = np.array([
...     [0.0,  0.0],
...     [3.0,  1.0],
...     [9.0, -2.0],
... ])
>>> curve = bezier.Curve(nodes, 2)
>>> linearization_error(curve)
1.25

As a non-example, consider a “pathological” set of control points:

\[\begin{split}B(s) = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s)^3 + \left[\begin{array}{c} 5 \\ 12 \end{array}\right] 3s(1 - s)^2 + \left[\begin{array}{c} 10 \\ 24 \end{array}\right] 3s^2(1 - s) + \left[\begin{array}{c} 30 \\ 72 \end{array}\right] s^3\end{split}\]

By construction, this lies on the line \(y = \frac{12x}{5}\), but the parametrization is cubic: \(12 \cdot x(s) = 5 \cdot y(s) = 180s(s^2 + 1)\). Hence, the fact that the curve is a line is not accounted for and we take the worse case among the nodes in:

\[\begin{split}B''(s) = 3 \cdot 2 \cdot \left( \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s) + \left[\begin{array}{c} 15 \\ 36 \end{array}\right] s\right)\end{split}\]

which gives a nonzero maximum error:

>>> nodes = np.array([
...     [ 0.0,  0.0],
...     [ 5.0, 12.0],
...     [10.0, 24.0],
...     [30.0, 72.0],
... ])
>>> curve = bezier.Curve(nodes, 3)
>>> linearization_error(curve)
29.25

Though it may seem that 0 is a more appropriate answer, consider the goal of this function. We seek to linearize curves and then intersect the linear approximations. Then the \(s\)-values from the line-line intersection is lifted back to the curves. Thus the error \(\|B(s) - L(s)\|_2\) is more relevant than the underyling algebraic curve containing \(B(s)\).

Note

It may be more appropriate to use a relative linearization error rather than the absolute error provided here. It’s unclear if the domain \(\left[0, 1\right]\) means the error is already adequately scaled or if the error should be scaled by the arc length of the curve or the (easier-to-compute) length of the line.

Parameters:curve (Curve) – A curve to be approximated by a line.
Returns:The maximum error between the curve and the linear approximation.
Return type:float
bezier._intersection_helpers.newton_refine(s, curve1, t, curve2)

Apply one step of 2D Newton’s method.

We want to use Newton’s method on the function

\[F(s, t) = B_1(s) - B_2(t)\]

to refine \(\left(s_{\ast}, t_{\ast}\right)\). Using this, and the Jacobian \(DF\), we “solve”

\[\begin{split}\left[\begin{array}{c} 0 \\ 0 \end{array}\right] \approx F\left(s_{\ast} + \Delta s, t_{\ast} + \Delta t\right) \approx F\left(s_{\ast}, t_{\ast}\right) + \left[\begin{array}{c c} B_1'\left(s_{\ast}\right) & - B_2'\left(t_{\ast}\right) \end{array}\right] \left[\begin{array}{c} \Delta s \\ \Delta t \end{array}\right]\end{split}\]

and refine with the component updates \(\Delta s\) and \(\Delta t\).

Note

This implementation assumes curve1 and curve2 live in \(\mathbf{R}^2\).

For example, the curves

\[\begin{split}\begin{align*} B_1(s) &= \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s)^2 + \left[\begin{array}{c} 2 \\ 4 \end{array}\right] 2s(1 - s) + \left[\begin{array}{c} 4 \\ 0 \end{array}\right] s^2 \\ B_2(t) &= \left[\begin{array}{c} 2 \\ 0 \end{array}\right] (1 - t) + \left[\begin{array}{c} 0 \\ 3 \end{array}\right] t \end{align*}\end{split}\]

intersect at the point \(B_1\left(\frac{1}{4}\right) = B_2\left(\frac{1}{2}\right) = \frac{1}{2} \left[\begin{array}{c} 2 \\ 3 \end{array}\right]\).

However, starting from the wrong point we have

\[\begin{split}\begin{align*} F\left(\frac{3}{8}, \frac{1}{4}\right) &= \frac{1}{8} \left[\begin{array}{c} 0 \\ 9 \end{array}\right] \\ DF\left(\frac{3}{8}, \frac{1}{4}\right) &= \left[\begin{array}{c c} 4 & 2 \\ 2 & -3 \end{array}\right] \\ \Longrightarrow \left[\begin{array}{c} \Delta s \\ \Delta t \end{array}\right] &= \frac{9}{64} \left[\begin{array}{c} -1 \\ 2 \end{array}\right]. \end{align*}\end{split}\]
_images/newton_refine1.png
>>> nodes1 = np.array([
...     [0.0, 0.0],
...     [2.0, 4.0],
...     [4.0, 0.0],
... ])
>>> curve1 = bezier.Curve(nodes1, 2)
>>> nodes2 = np.array([
...     [2.0, 0.0],
...     [0.0, 3.0],
... ])
>>> curve2 = bezier.Curve(nodes2, 1)
>>> s, t = 0.375, 0.25
>>> new_s, new_t = newton_refine(s, curve1, t, curve2)
>>> 64.0 * (new_s - s)
-9.0
>>> 64.0 * (new_t - t)
18.0

For “typical” curves, we converge to a solution quadratically. This means that the number of correct digits doubles every iteration (until machine precision is reached).

_images/newton_refine2.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.25, 2.0],
...     [0.5, -2.0],
...     [0.75, 2.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0, 1.0],
...     [0.25, 0.5],
...     [0.5, 0.5],
...     [0.75, 0.5],
...     [1.0, 0.0],
... ]))
>>> # The expected intersection is the only real root of
>>> # 28 s^3 - 30 s^2 + 9 s - 1.
>>> omega = (28.0 * np.sqrt(17.0) + 132.0)**(1.0 / 3.0) / 28.0
>>> expected = 5.0 / 14.0 + omega + 1 / (49.0 * omega)
>>> s_vals = [0.625, None, None, None, None]
>>> t = 0.625
>>> np.log2(abs(expected - s_vals[0]))
-4.399...
>>> s_vals[1], t = newton_refine(s_vals[0], curve1, t, curve2)
>>> np.log2(abs(expected - s_vals[1]))
-7.901...
>>> s_vals[2], t = newton_refine(s_vals[1], curve1, t, curve2)
>>> np.log2(abs(expected - s_vals[2]))
-16.010...
>>> s_vals[3], t = newton_refine(s_vals[2], curve1, t, curve2)
>>> np.log2(abs(expected - s_vals[3]))
-32.110...
>>> s_vals[4], t = newton_refine(s_vals[3], curve1, t, curve2)
>>> s_vals[4] == expected
True

However, when the intersection occurs at a point of tangency, the convergence becomes linear. This means that the number of correct digits added each iteration is roughly constant.

_images/newton_refine3.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [0.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.5],
...     [1.0, 0.5],
... ]))
>>> expected = 0.5
>>> s_vals = [0.375, None, None, None, None, None]
>>> t = 0.375
>>> np.log2(abs(expected - s_vals[0]))
-3.0
>>> s_vals[1], t = newton_refine(s_vals[0], curve1, t, curve2)
>>> np.log2(abs(expected - s_vals[1]))
-4.0
>>> s_vals[2], t = newton_refine(s_vals[1], curve1, t, curve2)
>>> np.log2(abs(expected - s_vals[2]))
-5.0
>>> s_vals[3], t = newton_refine(s_vals[2], curve1, t, curve2)
>>> np.log2(abs(expected - s_vals[3]))
-6.0
>>> s_vals[4], t = newton_refine(s_vals[3], curve1, t, curve2)
>>> np.log2(abs(expected - s_vals[4]))
-7.0
>>> s_vals[5], t = newton_refine(s_vals[4], curve1, t, curve2)
>>> np.log2(abs(expected - s_vals[5]))
-8.0

Unfortunately, the process terminates with an error that is not close to machine precision \(\varepsilon\) when \(\Delta s = \Delta t = 0\).

>>> s1 = t1 = 0.5 - 0.5**27
>>> np.log2(0.5 - s1)
-27.0
>>> s2, t2 = newton_refine(s1, curve1, t1, curve2)
>>> s2 == t2
True
>>> np.log2(0.5 - s2)
-28.0
>>> s3, t3 = newton_refine(s2, curve1, t2, curve2)
>>> s3 == t3 == s2
True

Due to round-off near the point of tangency, the final error resembles \(\sqrt{\varepsilon}\) rather than machine precision as expected.

Note

The following is not implemented in this function. It’s just an exploration on how the shortcomings might be addressed.

However, this can be overcome. At the point of tangency, we want \(B_1'(s) \parallel B_2'(t)\). This can be checked numerically via

\[B_1'(s) \times B_2'(t) = 0.\]

For the last example (the one that converges linearly), this is

\[\begin{split}0 = \left[\begin{array}{c} 1 \\ 2 - 4s \end{array}\right] \times \left[\begin{array}{c} 1 \\ 0 \end{array}\right] = 4 s - 2.\end{split}\]

With this, we can modify Newton’s method to find a zero of the over-determined system

\[\begin{split}G(s, t) = \left[\begin{array}{c} B_0(s) - B_1(t) \\ B_1'(s) \times B_2'(t) \end{array}\right] = \left[\begin{array}{c} s - t \\ 2 s (1 - s) - \frac{1}{2} \\ 4 s - 2\end{array}\right].\end{split}\]

Since \(DG\) is \(3 \times 2\), we can’t invert it. However, we can find a least-squares solution:

\[\begin{split}\left(DG^T DG\right) \left[\begin{array}{c} \Delta s \\ \Delta t \end{array}\right] = -DG^T G.\end{split}\]

This only works if \(DG\) has full rank. In this case, it does since the submatrix containing the first and last rows has rank two:

\[\begin{split}DG = \left[\begin{array}{c c} 1 & -1 \\ 2 - 4 s & 0 \\ 4 & 0 \end{array}\right].\end{split}\]

Though this avoids a singular system, the normal equations have a condition number that is the square of the condition number of the matrix.

Starting from \(s = t = \frac{3}{8}\) as above:

>>> s0, t0 = 0.375, 0.375
>>> np.log2(0.5 - s0)
-3.0
>>> s1, t1 = modified_update(s0, t0)
>>> s1 == t1
True
>>> 1040.0 * s1
519.0
>>> np.log2(0.5 - s1)
-10.022...
>>> s2, t2 = modified_update(s1, t1)
>>> s2 == t2
True
>>> np.log2(0.5 - s2)
-31.067...
>>> s3, t3 = modified_update(s2, t2)
>>> s3 == t3 == 0.5
True
Parameters:
  • s (float) – Parameter of a near-intersection along curve1.
  • curve1 (Curve) – First curve forming intersection.
  • t (float) – Parameter of a near-intersection along curve2.
  • curve2 (Curve) – Second curve forming intersection.
Returns:

The refined parameters from a single Newton step.

Return type:

Tuple [ float, float ]

bezier._intersection_helpers.segment_intersection(start0, end0, start1, end1)

Determine the intersection of two line segments.

Assumes each line is parametric

\[\begin{split}\begin{alignat*}{2} L_0(s) &= S_0 (1 - s) + E_0 s &&= S_0 + s \Delta_0 \\ L_1(t) &= S_1 (1 - t) + E_1 t &&= S_1 + t \Delta_1. \end{alignat*}\end{split}\]

To solve \(S_0 + s \Delta_0 = S_1 + t \Delta_1\), we use the cross product:

\[\left(S_0 + s \Delta_0\right) \times \Delta_1 = \left(S_1 + t \Delta_1\right) \times \Delta_1 \Longrightarrow s \left(\Delta_0 \times \Delta_1\right) = \left(S_1 - S_0\right) \times \Delta_1.\]

Similarly

\[\Delta_0 \times \left(S_0 + s \Delta_0\right) = \Delta_0 \times \left(S_1 + t \Delta_1\right) \Longrightarrow \left(S_1 - S_0\right) \times \Delta_0 = \Delta_0 \times \left(S_0 - S_1\right) = t \left(\Delta_0 \times \Delta_1\right).\]

Note

Since our points are in \(\mathbf{R}^2\), the “traditional” cross product in \(\mathbf{R}^3\) will always point in the \(z\) direction, so in the above we mean the \(z\) component of the cross product, rather than the entire vector.

For example, the diagonal lines

\[\begin{split}\begin{align*} L_0(s) &= \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s) + \left[\begin{array}{c} 2 \\ 2 \end{array}\right] s \\ L_1(t) &= \left[\begin{array}{c} -1 \\ 2 \end{array}\right] (1 - t) + \left[\begin{array}{c} 1 \\ 0 \end{array}\right] t \end{align*}\end{split}\]

intersect at \(L_0\left(\frac{1}{4}\right) = L_1\left(\frac{3}{4}\right) = \frac{1}{2} \left[\begin{array}{c} 1 \\ 1 \end{array}\right]\).

_images/segment_intersection1.png
>>> start0 = np.array([[0.0, 0.0]])
>>> end0 = np.array([[2.0, 2.0]])
>>> start1 = np.array([[-1.0, 2.0]])
>>> end1 = np.array([[1.0, 0.0]])
>>> s, t, _ = segment_intersection(start0, end0, start1, end1)
>>> s
0.25
>>> t
0.75

Taking the parallel (but different) lines

\[\begin{split}\begin{align*} L_0(s) &= \left[\begin{array}{c} 1 \\ 0 \end{array}\right] (1 - s) + \left[\begin{array}{c} 0 \\ 1 \end{array}\right] s \\ L_1(t) &= \left[\begin{array}{c} -1 \\ 3 \end{array}\right] (1 - t) + \left[\begin{array}{c} 3 \\ -1 \end{array}\right] t \end{align*}\end{split}\]

we should be able to determine that the lines don’t intersect, but this function is not meant for that check:

_images/segment_intersection2.png
>>> start0 = np.array([[1.0, 0.0]])
>>> end0 = np.array([[0.0, 1.0]])
>>> start1 = np.array([[-1.0, 3.0]])
>>> end1 = np.array([[3.0, -1.0]])
>>> _, _, success = segment_intersection(start0, end0, start1, end1)
>>> success
False

Instead, we use parallel_different():

>>> parallel_different(start0, end0, start1, end1)
True
Parameters:
  • start0 (numpy.ndarray) – A 1x2 NumPy array that is the start vector \(S_0\) of the parametric line \(L_0(s)\).
  • end0 (numpy.ndarray) – A 1x2 NumPy array that is the end vector \(E_0\) of the parametric line \(L_0(s)\).
  • start1 (numpy.ndarray) – A 1x2 NumPy array that is the start vector \(S_1\) of the parametric line \(L_1(s)\).
  • end1 (numpy.ndarray) – A 1x2 NumPy array that is the end vector \(E_1\) of the parametric line \(L_1(s)\).
Returns:

Pair of \(s_{\ast}\) and \(t_{\ast}\) such that the lines intersect: \(L_0\left(s_{\ast}\right) = L_1\left(t_{\ast}\right)\) and then a boolean indicating if an intersection was found.

Return type:

Tuple [ float, float, bool ]

bezier._intersection_helpers.parallel_different(start0, end0, start1, end1)

Checks if two parallel lines ever meet.

Meant as a back-up when segment_intersection() fails.

Note

This function assumes but never verifies that the lines are parallel.

In the case that the segments are parallel and lie on the exact same line, finding a unique intersection is not possible. However, if they are parallel but on different lines, then there is a guarantee of no intersection.

In segment_intersection(), we utilized the normal form of the lines (via the cross product):

\[\begin{split}\begin{align*} L_0(s) \times \Delta_0 &\equiv S_0 \times \Delta_0 \\ L_1(t) \times \Delta_1 &\equiv S_1 \times \Delta_1 \end{align*}\end{split}\]

So, we can detect if \(S_1\) is on the first line by checking if

\[S_0 \times \Delta_0 \stackrel{?}{=} S_1 \times \Delta_0.\]

If it is not on the first line, then we are done, the segments don’t meet:

_images/parallel_different1.png
>>> # Line: y = 1
>>> start0 = np.array([[0.0, 1.0]])
>>> end0 = np.array([[1.0, 1.0]])
>>> # Vertical shift up: y = 2
>>> start1 = np.array([[-1.0, 2.0]])
>>> end1 = np.array([[3.0, 2.0]])
>>> parallel_different(start0, end0, start1, end1)
True

If \(S_1\) is on the first line, we want to check that \(S_1\) and \(E_1\) define parameters outside of \(\left[0, 1\right]\). To compute these parameters:

\[L_1(t) = S_0 + s_{\ast} \Delta_0 \Longrightarrow s_{\ast} = \frac{\Delta_0^T \left( L_1(t) - S_0\right)}{\Delta_0^T \Delta_0}.\]

For example, the intervals \(\left[0, 1\right]\) and \(\left[\frac{3}{2}, 2\right]\) (via \(S_1 = S_0 + \frac{3}{2} \Delta_0\) and \(E_1 = S_0 + 2 \Delta_0\)) correspond to segments that don’t meet:

_images/parallel_different2.png
>>> start0 = np.array([[1.0, 0.0]])
>>> delta0 = np.array([[2.0, -1.0]])
>>> end0 = start0 + 1.0 * delta0
>>> start1 = start0 + 1.5 * delta0
>>> end1 = start0 + 2.0 * delta0
>>> parallel_different(start0, end0, start1, end1)
True

but if the intervals overlap, like \(\left[0, 1\right]\) and \(\left[-1, \frac{1}{2}\right]\), the segments meet:

_images/parallel_different3.png
>>> start1 = start0 - 1.0 * delta0
>>> end1 = start0 + 0.5 * delta0
>>> parallel_different(start0, end0, start1, end1)
False

Similarly, if the second interval completely contains the first, the segments meet:

_images/parallel_different4.png
>>> start1 = start0 + 3.0 * delta0
>>> end1 = start0 - 2.0 * delta0
>>> parallel_different(start0, end0, start1, end1)
False

Note

This function doesn’t currently allow wiggle room around the desired value, i.e. the two values must be bitwise identical. However, the most “correct” version of this function likely should allow for some round off.

Parameters:
  • start0 (numpy.ndarray) – A 1x2 NumPy array that is the start vector \(S_0\) of the parametric line \(L_0(s)\).
  • end0 (numpy.ndarray) – A 1x2 NumPy array that is the end vector \(E_0\) of the parametric line \(L_0(s)\).
  • start1 (numpy.ndarray) – A 1x2 NumPy array that is the start vector \(S_1\) of the parametric line \(L_1(s)\).
  • end1 (numpy.ndarray) – A 1x2 NumPy array that is the end vector \(E_1\) of the parametric line \(L_1(s)\).
Returns:

Indicating if the lines are different.

Return type:

bool

bezier._curve_helpers.get_curvature(nodes, degree, tangent_vec, s)

Compute the signed curvature of a curve at \(s\).

Computed via

\[\frac{B'(s) \times B''(s)}{\left\lVert B'(s) \right\rVert_2^3}\]
_images/get_curvature.png
>>> nodes = np.array([
...     [1.0 ,  0.0],
...     [0.75,  2.0],
...     [0.5 , -2.0],
...     [0.25,  2.0],
...     [0.0 ,  0.0],
... ])
>>> s = 0.5
>>> tangent_vec = hodograph(nodes, s)
>>> tangent_vec
array([[-1., 0.]])
>>> curvature = get_curvature(nodes, 4, tangent_vec, s)
>>> curvature
-12.0
Parameters:
  • nodes (numpy.ndarray) – The nodes of a curve.
  • degree (int) – The degree of the curve.
  • tangent_vec (numpy.ndarray) – The already computed value of \(B'(s)\)
  • s (float) – The parameter value along the curve.
Returns:

The signed curvature.

Return type:

float

bezier._curve_helpers.newton_refine(curve, point, s)

Refine a solution to \(B(s) = p\) using Newton’s method.

Computes updates via

\[\mathbf{0} \approx \left(B\left(s_{\ast}\right) - p\right) + B'\left(s_{\ast}\right) \Delta s\]

For example, consider the curve

\[\begin{split}B(s) = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] (1 - s)^2 + \left[\begin{array}{c} 1 \\ 2 \end{array}\right] 2 (1 - s) s + \left[\begin{array}{c} 3 \\ 1 \end{array}\right] s^2\end{split}\]

and the point \(B\left(\frac{1}{4}\right) = \frac{1}{16} \left[\begin{array}{c} 9 \\ 13 \end{array}\right]\).

Starting from the wrong point \(s = \frac{3}{4}\), we have

\[\begin{split}\begin{align*} p - B\left(\frac{1}{2}\right) &= -\frac{1}{2} \left[\begin{array}{c} 3 \\ 1 \end{array}\right] \\ B'\left(\frac{1}{2}\right) &= \frac{1}{2} \left[\begin{array}{c} 7 \\ -1 \end{array}\right] \\ \Longrightarrow \frac{1}{4} \left[\begin{array}{c c} 7 & -1 \end{array}\right] \left[\begin{array}{c} 7 \\ -1 \end{array}\right] \Delta s &= -\frac{1}{4} \left[\begin{array}{c c} 7 & -1 \end{array}\right] \left[\begin{array}{c} 3 \\ 1 \end{array}\right] \\ \Longrightarrow \Delta s &= -\frac{2}{5} \end{align*}\end{split}\]
_images/newton_refine_curve.png
>>> curve = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [1.0, 2.0],
...     [3.0, 1.0],
... ]))
>>> point = curve.evaluate_multi(np.array([0.25]))
>>> point
array([[ 0.5625, 0.8125]])
>>> s = 0.75
>>> new_s = newton_refine(curve, point, s)
>>> 5 * (new_s - s)
-2.0

On curves that are not “valid” (i.e. \(B(s)\) is not injective with non-zero gradient), Newton’s method may break down and converge linearly:

_images/newton_refine_curve_cusp.png
>>> curve = bezier.Curve.from_nodes(np.array([
...     [ 6.0, -3.0],
...     [-2.0,  3.0],
...     [-2.0, -3.0],
...     [ 6.0,  3.0],
... ]))
>>> expected = 0.5
>>> point = curve.evaluate_multi(np.array([expected]))
>>> point
array([[ 0., 0.]])
>>> s_vals = [0.625, None, None, None, None, None]
>>> np.log2(abs(expected - s_vals[0]))
-3.0
>>> s_vals[1] = newton_refine(curve, point, s_vals[0])
>>> np.log2(abs(expected - s_vals[1]))
-3.983...
>>> s_vals[2] = newton_refine(curve, point, s_vals[1])
>>> np.log2(abs(expected - s_vals[2]))
-4.979...
>>> s_vals[3] = newton_refine(curve, point, s_vals[2])
>>> np.log2(abs(expected - s_vals[3]))
-5.978...
>>> s_vals[4] = newton_refine(curve, point, s_vals[3])
>>> np.log2(abs(expected - s_vals[4]))
-6.978...
>>> s_vals[5] = newton_refine(curve, point, s_vals[4])
>>> np.log2(abs(expected - s_vals[5]))
-7.978...

Due to round-off, the Newton process terminates with an error that is not close to machine precision \(\varepsilon\) when \(\Delta s = 0\).

>>> s_vals = [0.625]
>>> new_s = newton_refine(curve, point, s_vals[-1])
>>> while new_s not in s_vals:
...     s_vals.append(new_s)
...     new_s = newton_refine(curve, point, s_vals[-1])
...
>>> terminal_s = s_vals[-1]
>>> terminal_s == newton_refine(curve, point, terminal_s)
True
>>> 2.0**(-31) <= abs(terminal_s - 0.5) <= 2.0**(-29)
True

Due to round-off near the cusp, the final error resembles \(\sqrt{\varepsilon}\) rather than machine precision as expected.

Parameters:
  • curve (Curve) – The curve to refine a point on.
  • point (numpy.ndarray) – A point on curve.
  • s (float) – An “almost” solution to \(B(s) = p\).
Returns:

The updated value \(s + \Delta s\).

Return type:

float

class bezier._intersection_helpers.Intersection(first, s, second, t, point=None, interior_curve=None)

Representation of a curve-curve intersection.

Parameters:
  • first (Curve) – The “first” curve in the intersection.
  • s (float) – The parameter along first where the intersection occurs.
  • second (Curve) – The “second” curve in the intersection.
  • t (float) – The parameter along second where the intersection occurs.
  • point (Optional [ numpy.ndarray ]) – The point where the two curves actually intersect.
  • interior_curve (Optional [ IntersectionClassification ]) – The classification of the intersection.
first

Curve: The “first” curve in the intersection.

s

float: The intersection parameter for the first curve.

second

Curve: The “second” curve in the intersection.

t

float: The intersection parameter for the second curve.

point

numpy.ndarray: The point where the intersection occurs.

interior_curve

IntersectionClassification: Which of the curves is on the interior.

See classify_intersection() for more details.

get_point()

The point where the intersection occurs.

This exists primarily for Curve.intersect().

Returns:The point where the intersection occurs. Returns point if stored on the current value, otherwise computes the value on the fly.
Return type:numpy.ndarray
class bezier._intersection_helpers.Linearization(curve, error)

A linearization of a curve.

This class is provided as a stand-in for a curve, so it provides a similar interface.

Parameters:
curve

Curve: The curve that this linearization approximates.

error

float: The linearization error for the linearized curve.

start_node

numpy.ndarray: The start vector of this linearization.

end_node

numpy.ndarray: The end vector of this linearization.

subdivide()

Do-nothing method to match the Curve interface.

Returns:List of all subdivided parts, which is just the current object.
Return type:Tuple [ Linearization ]
classmethod from_shape(shape)

Try to linearize a curve (or an already linearized curve).

Parameters:shape (Union [ Curve, Linearization ]) – A curve or an already linearized curve.
Returns:The (potentially linearized) curve.
Return type:Union [ Curve, Linearization ]
bezier._surface_helpers.newton_refine(surface, x_val, y_val, s, t)

Refine a solution to \(B(s, t) = p\) using Newton’s method.

Computes updates via

\[\begin{split}\left[\begin{array}{c} 0 \\ 0 \end{array}\right] \approx \left(B\left(s_{\ast}, t_{\ast}\right) - \left[\begin{array}{c} x \\ y \end{array}\right]\right) + \left[\begin{array}{c c} B_s\left(s_{\ast}, t_{\ast}\right) & B_t\left(s_{\ast}, t_{\ast}\right) \end{array}\right] \left[\begin{array}{c} \Delta s \\ \Delta t \end{array}\right]\end{split}\]

For example, (with weights \(\lambda_1 = 1 - s - t, \lambda_2 = s, \lambda_3 = t\)) consider the surface

\[\begin{split}B(s, t) = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \lambda_1^2 + \left[\begin{array}{c} 1 \\ 0 \end{array}\right] 2 \lambda_1 \lambda_2 + \left[\begin{array}{c} 2 \\ 0 \end{array}\right] \lambda_2^2 + \left[\begin{array}{c} 2 \\ 1 \end{array}\right] 2 \lambda_1 \lambda_3 + \left[\begin{array}{c} 2 \\ 2 \end{array}\right] 2 \lambda_2 \lambda_1 + \left[\begin{array}{c} 0 \\ 2 \end{array}\right] \lambda_3^2\end{split}\]

and the point \(B\left(\frac{1}{4}, \frac{1}{2}\right) = \frac{1}{4} \left[\begin{array}{c} 5 \\ 5 \end{array}\right]\).

Starting from the wrong point \(s = \frac{1}{2}, t = \frac{1}{4}\), we have

\[\begin{split}\begin{align*} \left[\begin{array}{c} x \\ y \end{array}\right] - B\left(\frac{1}{2}, \frac{1}{4}\right) &= \frac{1}{4} \left[\begin{array}{c} -1 \\ 2 \end{array}\right] \\ DB\left(\frac{1}{2}, \frac{1}{4}\right) &= \frac{1}{2} \left[\begin{array}{c c} 3 & 2 \\ 1 & 6 \end{array}\right] \\ \Longrightarrow \left[\begin{array}{c} \Delta s \\ \Delta t \end{array}\right] &= \frac{1}{32} \left[\begin{array}{c} -10 \\ 7 \end{array}\right] \end{align*}\end{split}\]
_images/newton_refine_surface.png
>>> surface = bezier.Surface.from_nodes(np.array([
...     [0.0, 0.0],
...     [1.0, 0.0],
...     [2.0, 0.0],
...     [2.0, 1.0],
...     [2.0, 2.0],
...     [0.0, 2.0],
... ]))
>>> surface.is_valid
True
>>> (x_val, y_val), = surface.evaluate_cartesian(0.25, 0.5)
>>> x_val, y_val
(1.25, 1.25)
>>> s, t = 0.5, 0.25
>>> new_s, new_t = newton_refine(surface, x_val, y_val, s, t)
>>> 32 * (new_s - s)
-10.0
>>> 32 * (new_t - t)
7.0
Parameters:
  • surface (Surface) – A Bézier surface (assumed to be two-dimensional).
  • x_val (float) – The \(x\)-coordinate of a point on the surface.
  • y_val (float) – The \(y\)-coordinate of a point on the surface.
  • s (float) – Approximate \(s\)-value to be refined.
  • t (float) – Approximate \(t\)-value to be refined.
Returns:

The refined \(s\) and \(t\) values.

Return type:

Tuple [ float, float ]

bezier._surface_helpers.classify_intersection(intersection)

Determine which curve is on the “inside of the intersection”.

This is intended to be a helper for forming a CurvedPolygon from the edge intersections of two Surface-s. In order to move from one intersection to another (or to the end of an edge), the interior edge must be determined at the point of intersection.

The “typical” case is on the interior of both edges:

_images/classify_intersection1.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [1.0 , 0.0 ],
...     [1.75, 0.25],
...     [2.0 , 1.0 ],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0   , 0.0   ],
...     [1.6875, 0.0625],
...     [2.0   , 0.5   ],
... ]))
>>> s, t = 0.25, 0.5
>>> curve1.evaluate(s) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> tangent1 = hodograph(curve1, s)
>>> tangent1
array([[ 1.25, 0.75]])
>>> tangent2 = hodograph(curve2, t)
>>> tangent2
array([[ 2. , 0.5]])
>>> intersection = Intersection(curve1, s, curve2, t)
>>> classify_intersection(intersection)
<IntersectionClassification.first: 'first'>

We determine the interior (i.e. left) one by using the right-hand rule: by embedding the tangent vectors in \(\mathbf{R}^3\), we compute

\[\begin{split}\left[\begin{array}{c} x_1'(s) \\ y_1'(s) \\ 0 \end{array}\right] \times \left[\begin{array}{c} x_2'(t) \\ y_2'(t) \\ 0 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ x_1'(s) y_2'(t) - x_2'(t) y_1'(s) \end{array}\right].\end{split}\]

If the cross product quantity \(B_1'(s) \times B_2'(t) = x_1'(s) y_2'(t) - x_2'(t) y_1'(s)\) is positive, then the first curve is “outside” / “to the right”, i.e. the second curve is interior. If the cross product is negative, the first curve is interior.

When \(B_1'(s) \times B_2'(t) = 0\), the tangent vectors are parallel, i.e. the intersection is a point of tangency:

_images/classify_intersection2.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [1.0, 0.0],
...     [1.5, 1.0],
...     [2.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [1.5, 1.0],
...     [3.0, 0.0],
... ]))
>>> s, t = 0.5, 0.5
>>> curve1.evaluate(s) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> intersection = Intersection(curve1, s, curve2, t)
>>> classify_intersection(intersection)
<IntersectionClassification.tangent_second: 'tangent_second'>

Depending on the direction of the parameterizations, the interior curve may change, but we can use the (signed) curvature of each curve at that point to determine which is on the interior:

_images/classify_intersection3.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [2.0, 0.0],
...     [1.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [3.0, 0.0],
...     [1.5, 1.0],
...     [0.0, 0.0],
... ]))
>>> s, t = 0.5, 0.5
>>> curve1.evaluate(s) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> intersection = Intersection(curve1, s, curve2, t)
>>> classify_intersection(intersection)
<IntersectionClassification.tangent_first: 'tangent_first'>

When the curves are moving in opposite directions at a point of tangency, there is no side to choose. Either the point of tangency is not part of any CurvedPolygon intersection

_images/classify_intersection4.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [2.0, 0.0],
...     [1.5, 1.0],
...     [1.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0],
...     [1.5, 1.0],
...     [3.0, 0.0],
... ]))
>>> s, t = 0.5, 0.5
>>> curve1.evaluate(s) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> intersection = Intersection(curve1, s, curve2, t)
>>> classify_intersection(intersection)
<IntersectionClassification.opposed: 'opposed'>

or the point of tangency is a “degenerate” part of two CurvedPolygon intersections. It is “degenerate” because from one direction, the point should be classified as 1 and from another as 0:

_images/classify_intersection5.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [1.0, 0.0],
...     [1.5, 1.0],
...     [2.0, 0.0],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [3.0, 0.0],
...     [1.5, 1.0],
...     [0.0, 0.0],
... ]))
>>> s, t = 0.5, 0.5
>>> curve1.evaluate(s) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> intersection = Intersection(curve1, s, curve2, t)
>>> classify_intersection(intersection)
Traceback (most recent call last):
  ...
NotImplementedError: Curves moving in opposite direction
                     but define overlapping arcs.

However, if the curvature of each curve is identical, we don’t try to distinguish further:

_images/classify_intersection6.png
>>> curve1 = bezier.Curve.from_nodes(np.array([
...     [ 0.375,  0.0625],
...     [-0.125, -0.0625],
...     [-0.125,  0.0625],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [ 0.75,  0.25],
...     [-0.25, -0.25],
...     [-0.25,  0.25],
... ]))
>>> s, t = 0.5, 0.5
>>> curve1.evaluate(s) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> hodograph(curve1, s)
array([[-0.5, 0. ]])
>>> hodograph(curve2, t)
array([[-1., 0.]])
>>> curvature(curve1, s)
-2.0
>>> curvature(curve2, t)
-2.0
>>> intersection = Intersection(curve1, s, curve2, t)
>>> classify_intersection(intersection)
Traceback (most recent call last):
  ...
NotImplementedError: Tangent curves have same curvature.

In addition to points of tangency, intersections that happen at the end of an edge need special handling:

_images/classify_intersection7.png
>>> curve1a = bezier.Curve.from_nodes(np.array([
...     [0.0, 0.0 ],
...     [4.5, 0.0 ],
...     [9.0, 2.25],
... ]))
>>> curve2 = bezier.Curve.from_nodes(np.array([
...     [11.25, 0.0],
...     [ 9.0 , 4.5],
...     [ 2.75, 1.0],
... ]))
>>> s, t = 1.0, 0.375
>>> curve1a.evaluate(s) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> intersection = Intersection(curve1a, s, curve2, t)
>>> classify_intersection(intersection)
Traceback (most recent call last):
  ...
ValueError: ('Intersection occurs at the end of an edge',
             's', 1.0, 't', 0.375)
>>>
>>> curve1b = bezier.Curve.from_nodes(np.array([
...     [9.0, 2.25 ],
...     [4.5, 2.375],
...     [0.0, 2.5  ],
... ]))
>>> curve1b.evaluate(0.0) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> intersection = Intersection(curve1b, 0.0, curve2, t)
>>> classify_intersection(intersection)
<IntersectionClassification.first: 'first'>

As above, some intersections at the end of an edge are part of an actual intersection. However, some surfaces may just “kiss” at a corner intersection:

_images/classify_intersection8.png
>>> surface1 = bezier.Surface.from_nodes(np.array([
...     [0.25 , 1.0  ],
...     [0.0  , 0.5  ],
...     [0.0  , 0.0  ],
...     [0.625, 0.875],
...     [0.5  , 0.375],
...     [1.0  , 0.75 ],
... ]))
>>> surface2 = bezier.Surface.from_nodes(np.array([
...     [ 0.0625, 0.5  ],
...     [-0.25  , 1.0  ],
...     [-1.0   , 1.0  ],
...     [-0.5   , 0.125],
...     [-1.0   , 0.5  ],
...     [-1.0   , 0.0  ],
... ]))
>>> curve1, _, _ = surface1.edges
>>> curve2, _, _ = surface2.edges
>>> s, t = 0.5, 0.0
>>> curve1.evaluate(s) == curve2.evaluate(t)
array([[ True, True]], dtype=bool)
>>> intersection = Intersection(curve1, s, curve2, t)
>>> classify_intersection(intersection)
<IntersectionClassification.ignored_corner: 'ignored_corner'>

Note

This assumes the intersection occurs in \(\mathbf{R}^2\) but doesn’t check this.

Note

This function doesn’t allow wiggle room / round-off when checking endpoints, nor when checking if the cross product is near zero, nor when curvatures are compared. However, the most “correct” version of this function likely should allow for some round off.

Parameters:intersection (Intersection) – An intersection object.
Returns:The “inside” curve type, based on the classification enum.
Return type:IntersectionClassification
Raises:ValueError – If the intersection occurs at the end of either curve involved. This is because we want to classify which curve to move forward on, and we can’t move past the end of a segment.

bezier is a Python helper for Bézier Curves, Triangles, and Higher Order Objects.

This library provides:

Dive in and take a look!

_images/test_surfaces6Q_and_7Q.png

Installing

bezier can be installed with pip:

$ pip install --upgrade bezier

bezier is open-source, so you can alternatively grab the source code from GitHub and install from source.

Usage

The Bézier Package documentation provides API-level documentation.

License

bezier is made available under the Apache License. For more details, see LICENSE